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Background
Central statistical monitoring (CSM) has been a commonly practiced monitoring

approach in clinical trials. CSM involves various statistical methods to identify data-

related issues that can indicate problems in a trial’s conduct. In previous research,

we demonstrated the benefit of applying comparisons of centers to the Grand Mean

of the data1. We previously investigated different statistical models that can

implement this type of comparison for binomial, ordinal, and continuous endpoints.

In this research, we further investigate whether this comparison can be applied by

different subtypes of generalized linear models for count data. We demonstrate this

approach on Real-World-Data (RWD) from the German Multiple Sclerosis Registry

Methods
• Bayesian generalized linear model (BayesGLM) is an alternative to classical GLM

and can counteract computational problems due to observing only 0s in some

centers and can account for overdispersion in count data. We additionally

consider a negative binomial model, a common approach to account for

overdispersion in count data. In a simulation study, we investigate whether these

models can control type I error when comparing centers to the Grand Mean (GM)

• Monte Carlo simulations (1000 data sets) were run for balanced and unbalanced

scenarios covering a range of settings that could be found in clinical trials in

different centers. Additionally, a random exposure period following the exponential

distribution for counts was considered as an offset. The simulations aimed to

detect whether both models can control type I error (only unbalanced simulations

are shown)

• For a given model with estimated parameters (on the log link) mi for each center

i=1,...,I and possibly unbalanced sample sizes ni, the Grand Mean m. can be

computed by 𝑚.= σ𝑖=1
𝐼 𝑛𝑖
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• Comparisons of parameters mi to the Grand Mean m. can then be written as a set
of k=1,…,K linear contrasts, with contrast coefficients 𝑐𝑘 = (𝑐𝑘1, 𝑐𝑘2, 𝑐𝑘3, … 𝑐𝑘𝐼)
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• The deviations dk of each center from the Grand Mean can then be written 

as: 𝑑𝑘 = 𝑚𝑖=𝑘 −𝑚. = σ𝑖=1
𝐼 𝑐𝑘𝑖𝑚𝑖

• Simultaneous confidence intervals adjusted for multiple comparisons are 

computed using the methods of Hothorn et al. (2008)

• The prior assumption on parameters in BayesGLM prevents standard errors from 
becoming extremely wide. Cauchy distribution with the assumption 10−9 < 𝜋𝑖< 1-

109 was chosen

Results
Simulation of negative binomial GLM, BayesGLM & Classical

GLM (quasipoisson)

Figure 1: The probability of falsely rejecting the null hypothesis for at least one center as a

function of n, mu and phi using the negative Binomial Model, Bayesian GLM and classical GLM.

The nominal type I error rate (𝛼 = 0.05) is shown as a horizontal line. Overdispersion parameter

phi was chosen following quasipoisson for BayesGLM and GLM. Size parameter was chosen as

the inverse of Kappa where kappa=mu*phi, mu (mean), GLM (Generalized linear model)

Figure 3: Application of mean comparisons of Adverse Events rates to GM using the

BayesGLM. Simultaneous confidence intervals (credible intervals) for contrasts of

center means with GM for the GMSR. GM (Grand Mean)

Conclusions
• Utilize the negative binomial model for the comparisons to GM for count

data in the absence of 0 counts and overdispersion, and BayesGLM in

the presence of 0 counts and/or presence of overdispersion

• All considered methods tend to show inflated type-I-error when sample

sizes are as small as 10, 20 or 40 per center, and counted events are

rare and have clear overdispersion
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Figure 2: Application of mean comparisons of Adverse Events rates to GM using the

Negbin. Simultaneous confidence intervals for contrasts of center means with GM for

the GMSR. Extremely wide simultaneous confidence limits and failure to detect any

deviation are due to observing 0 AEs in some centers. GM (Grand Mean)
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• Each simulation consisted of 10 centers with one deviating center

• The number of patients in the unbalanced center was half of the number of patients

in other centers

• With small phi, the negative binomial has a better control of type I error for all

simulated scenarios

• With increasing phi, BayesGLM and GLM have similar and better control than the

negative binomial model for small sample sizes

Application on the German MS Register data
• Data from 43 centers that recruited patients in the Pharmacovigilance

Module of the GMSR

• Contrasts of center means with Grand Mean

• 95% confidence interval allowing statistical inference

• Negative binomial model (also GLM) computationally fail to perform the

comparison due to inflated standard errors as a result of 0 presence in the

data
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